Heaps. Heapsort.
(CLRS 6)

1 Introduction

So far we have discussed tools necessary for analysis of algorithms (growth, summations and recurrences) and we have seen a couple of sorting algorithms as case-studies.

Today we discuss a data structure called priority queue, and its implementation with a heap. The heap will lead us to a different algorithm for sorting, called heapsort.

2 Priority Queue

• A priority queue supports the following operations on a set S of n elements:
 – INSERT: Insert a new element e in S
 – FINDMIN: Return the minimal element in S
 – DELETEMIN: Delete the minimal element in S

• Sometimes we are also interested in supporting the following operations:
 – CHANGE: Change the key (priority) of an element in S
 – DELETE: Delete an element from S

• Priority queues have many applications, e.g. in discrete event simulation, graph algorithms

• We can obviously sort using a priority queue:
 – Insert all elements using INSERT
 – Delete all elements in order using FINDMIN and DELETEMIN

3 Priority Queue implementations

3.1 A Priority Queue with an Array or List

• The first implementation that comes to mind is ordered array:

```
1 2 5 6 7 8 9 11 12 15 17
```

 – FINDMIN can be performed in $O(1)$ time
• DELETEMIN and INSERT takes $O(n)$ time since we need to expand/compress the array after inserting or deleting element.

• If the array is unordered all operations take $O(n)$ time.

• We could use double linked sorted list instead of array to avoid the $O(n)$ expansion/compression cost
 – but INSERT can still take $O(n)$ time.

3.2 A Priority Queue with a Heap

• The common way of implementing a priority queue is using a heap

• Heap definition:
 – Perfectly balanced binary tree
 * lowest level can be incomplete (but filled from left-to-right)
 – For all nodes v we have $\text{key}(v) \geq \text{key}(\text{parent}(v))$

• Note: this is a min-heap; a symmetrical definition is possible, giving a max-heap.

• Example:

```
      2
     / \  \
    5   3
   / \  /  \
  9  19 11  4
 / \  / \  /  \
15 14
```

• The beauty of heaps is that although they are trees, they can be implemented as arrays. The elements in the heap are stored level-by-level, left-to-right in the array.

Example:

```
2 5 3 9 19 11 4 15 14
```

– the left and right children of node in entry i are in entry $2i$ and $2i + 1$, respectively
– the parent of node in entry i is in entry $\lfloor \frac{i}{2} \rfloor$

• Properties of heap:
- Height $\Theta(\log n)$
- For a min-heap: Minimum of S is stored in root (for a max-heap, the maximum element is stored in the root).

- **Operations:**
 - **INSERT**
 * Insert element in new leaf in leftmost possible position on lowest level
 * Repeatedly swap element with element in parent node until heap order is reestablished (this is referred to as **up-heapify**).

 Example: Insertion of 4

 - By default **Heapify** works on the root node ($i = 1$). **Heapify(i)** means it’s called on node i in the heap. Prior to this call, the left and right children of node i must be heaps. After **Heapify(i)** is complete, the tree rooted at node i is a heap.
 - Changing the priority of a given node or deleting a given node can be handled similarly in $O(\log n)$ time.

 * Note: We can delete or update nodes in a heap if we are given their index in the array. For e.g. we cannot say “delete the node with priority 37” because we cannot search (efficiently) in a heap! But we can say “delete the node at index 5”.

 - **DELETE_MIN**
 * Delete element in root
 * Move element from rightmost leaf on lowest level to the root (and delete leaf)
 * Repeatedly swap element with the smaller of the children elements until heap order is reestablished (this is referred to as **down-heapify** or sometimes just **Heapify**).

 Example:

- **FindMin**
 * Return root element

- **Running time:** All operations traverse at most one root-leaf path $\Rightarrow O(\log n)$ time.
3.3 Heapsort

- Sorting using heap takes $\Theta(n \log n)$ time.
 - $n \cdot O(\log n)$ time to insert all elements (build the heap)
 - $n \cdot O(\log n)$ time to output sorted elements

- This is not in place. An in-place sorting algorithm with a heap is possible, and is referred to as heapsort.
 - Build a max-heap
 - Repeatedly, delete the largest element, and put it at the end of the array.

3.4 Building a heap in $O(n)$ time

- Sometimes we would like to build a heap faster than $O(n \log n)$

- By default HEAPIFY works on the root node ($i = 1$). HEAPIFY(i) means it’s called on node i in the heap. Prior to this call, the left and right children of node i must be heaps. After HEAPIFY (i) is complete, the tree rooted at node i is a heap.

 - BUILDHEAP (A)
 - * DOWN-HEAPIFY all nodes level-by-level, bottom-up (starting at node $n/2$)
 - Correctness:
 - * Induction on height of tree: When doing level i, all trees rooted at level $i - 1$ are heaps.
 - Analysis:
 - * The leaves are at height 0, the root is at height $\log n$
 - * Cost of DOWN-HEAPIFY on a node at height h is h
 - * n elements $\Rightarrow \leq \left\lceil \frac{n}{2} \right\rceil$ leaves, \ldots, $\left\lceil \frac{n}{2^h} \right\rceil$ elements at height h
 - * Total cost: $\sum_{i=1}^{\log n} h \cdot \left\lfloor \frac{n}{2^h} \right\rfloor = \Theta(n) \cdot \sum_{i=1}^{\log n} \frac{h}{2^h}$
 - * It can be shown that $\sum_{i=1}^{\log n} \frac{h}{2^h} = O(1) \Rightarrow$ the total buildheap cost is $\Theta(n)$