Strongly Connected Components (SCC’s)
(CLRS 22.5)

Basics

A strongly connected component (SCC) of a directed graph G = (V, E) is a maximal set
of vertices such that any two vertices in the set are mutually reachable.

e Example: All vertices along a directed cycle are in the same SCC.
e Intuitively, we think of a SCC as a cycle.

e Given a directed graph, some questions that one may be interested in are:
(1) Given a vertex v, compute it’s strongly connected component (SCC).
(2) Is G strongly connected (SC)?

(3) Compute the SCCs of G.

Practice:
e Draw a graph with 3 vertices and (a) 1SCC; (b) 2 SCCs; (c) 3 SCCs.

e What happens to SCC’s as you add an edge to the graph?

e Show an example when adding an edge does not change the SCC’s, and show one where it
does.

1 Computing the SCC of a given vertex v

All vertices in the same SCC as v must be able to reach v and v must be able to reach them. This
suggests the following approach, which runs in linear time O(V + E):

e Perform DFS(v) (or BFS(v)) to find all vertices reachable from wv.

e Perform DFS(v) using the incomign edges to find the vertices that reach v (a different way
to say this is that we perform DFS in the transpose graph GT).

e Find the vertices that are reached by both DFS’s. These are the vertices that are in the same
SCC. Why? Let u,u’ be two vertices that are both reachable from v and that reach v. Then
it follows that v ~» v and v ~» «' and thus u ~ «/. Similarly, v’ ~ v and v ~ u and thus
u' ~ .



2 Finding whether a graph G is strongly connected

For a graph to be SC, every vertex needs to be able to reach every other vertex. Take an arbitrary
vertex v and run DFS(v). If this does not reach all vertices, G is not SC. If DFS(v) reaches all
vertices, we continue with DFS(v) using the incoming edges (in other words, DFS(v) on G7): if
this does not reach all vertices, then clearly G is not SC. Otherwise, we know that v reaches all
vertices, and all vertices reach v. Does that mean that G is strongly connected? Yes. We have the
following approach which runs in linear time O(V + E):

1. Pick an arbitrary vertex v and perform DFS(v).
2. Perform DFS(v) in the transpose graph G7.

3. If both searches reach all vertices, GG is SC. Otherwise it’s not.

Proof: Let u,u arbitrary vertices in G. We know that u ~» v (because of (2)) and v ~
(because of (1)) and thus u ~» «'. Similarly u’ ~ u. Thus any u, v’ are mutually reachable.

3 Find the SCCs in G

e Naive: Ok, so we want to compute the SCC’s in G. We always start a problem by coming
up with the most straightfirward solution we can possibly think of. For e.g. we can start with
an arbitrary vertex v and compute its strongly connected component; then we delete v and
all vertices in its SCC from the graph, and repeat. This finds the components one at a time;
it can be shown this runs in the worst case |V/| searches, for a total of O(V(V + E).

e We ask the usual question: can we do better?

e Yes! There is a very clever and simple algorithm by Kosaraju-Sharir that finds the SCCs in
linear time! It’s very short, but it’s quite hard to understand.

e It’s key ingredient, and a concept that’s useful when thinking of SCC is the component graph:
this is a graph with one vertex per strongly connected components, and with an edge C' — C’
if there exists an edge (u,v) in G with « in C and v in C".

e Exercise: There’s one important property that the component graph has: What is it?

Answer: The compoent graph cannot have cycles.

Proof: Consider two SCC’s, C and C’, and assume there is a cycle between them: this means
than an arbitrary vertex in C' can reach an arbitrary vertex in C’; and the otehr way around,
via this cycle. This means that C, C’ would be a single strongly component, which violates
our assumption that they are separate, maximal SCC’s.

e Exercise: If we perform DFS on a graph with several SCC’s, is it possible that one SCC be
broken across two difefrent DFS trees?

Answer: No. Once DFS reaches a vertex of a SCC, it will reach the entire component,
eventually. That is to say, a DFS tree will visit the whole SCC, or not visit it at all.



Exercise: Is it possibel that a DFS tree contains more than one SCC?
Answer: Yes.

Kosaraju-Sharir idea is to call DF'S on the vertices in G in such an order so that a DFS tree
identifies precisely one SCC.

Exercise: Can you think of a vertex v to call DFS(v) so that all verties reached are in only
one SCC?

Answer: v can be any of the vertices in the “last” SCC of G in topological order.

As it turns out, there is no good way to identify the components in reverse topological order;
but it is possibel to identify them in topological order. We’ll also get one SCC per DFS tree
if we call DFS on any v in the “first” SCC in topological order—-for this we would need to
do DFS in G*' (i.e. on incoming edges).

Remember that tpological order on a DAG is given by reverse order of finish time. This gives
us the following algorithm:

SCC Algorithm (Kosaraju-Sharir)

1. Perform DFS(G) to compute finish times for all vertices.
2. Compute G7T.
3. For each vertex u in G in reverse order of finish time: run

DFS(u) and label all vertices in its DFS tree as a separate
SCC.

Why does this work? By now we have the intuition. Traversing the vertices in reverse finish
time gives us topological order in the component graph. We formalize with the following
claim:

Notation: For a SCC C, denote f(C) to be the largest finish time of a vertex in C. Denote
d(C) to be the smallest start/discover time of a vertex in C.

Claim: Let C, C’ be two SCC’s in G. If there is an edge (u,v) from a vertex u € C to a
vertex v € C’, then C must be finished after C: f(C) > f(C’).

Proof:

— Case 1: Component C is discovered before C’ by DFS(G), d(C) < d(C"): Let z be
the first vertex in C discovered by DFS. From x, DFS will reach all vertices in C, and,
through edge (u,v), it will reach component C’. It’s not possible to have an edge from
C’ back to C (it would cause a cycle), and so the entire C’ is finished before vertex wu,
and thus before x. Thus we have f(z) > f(C’) and thus f(C) > f(C").

— Case 2: Component C’ is discovered first: d(C') < d(C): Let y be the first vertex
discovered in C’. From y DF'S will reach all vertices in C’. There cannot be an edge from
a vertex in C’ to a vertex in C (because it would cause a cycle), hence no vertex in C is

reachable from y. This means that when DFS finishes, all vertices in C are still white.
This means C is discovered and finished after f(C").



